DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
当前地点:
>
> This Story


注册记数器 to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

More Industry Headlines

Japanese startup to develop ultra-compact proton therapy system Designed to replace conventional radiotherapy systems

Study calls for better factoring in of patient complexity in head CT scans Should consider complexity of associated billed patient encounters

FDA okays Philips' MR-only radiotherapy simulator, MRCAT pelvis Create treatment plans for bladder, rectal, anal and cervical cancer

Clinical engineering and the science of the capital budget process Purchasing insights from the experts at MD Buyline

Getting remote patient monitoring out of the garage and onto the streets Six strategies for meaningful outreach

Getting ahead of the digital health avalanche How can a health system know which innovative tools are worth its time?

Half of radiologists have net worth of $2 million or more New survey analyzed responses from over 20,000 physicians in over 30 specialties

Study shows 30 percent drop in unnecessary head CTs with BrainScope One May help ensure appropriate use of imaging

Varian to acquire Cancer Treatment Services International for $283 million Enables production of multidisciplinary solutions

Boston Children's Hospital teaming with GE Healthcare to develop radiology AI The first focus will reportedly be on brain scans

Image-based AI predicts breast cancer up to five years sooner

John W. Mitchell , Senior Correspondent
A team of researchers has applied a deep learning algorithm to find early breast cancer based on individual risk-based factors, rather than protocols based on current profiling standards, such as breast density.

The lead radiologist on the team reported that her institution, Massachusetts General Hospital (MGH), plans to begin actively using the deep learning platform to spot breast cancer within the next six months.

Story Continues Below Advertisement

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.



“This is very exciting,” Dr. Constance D. Lehman, a member of the research team and professor of Radiology, MGH, told HCB News. “Too many cancers are missed. My colleagues and I have always wanted to be more precise. With an individual risk-based tool we will be able to do that.”

The new AI mammography program was developed as a joint effort between MGH and the Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Massachusetts Institute of Technology (MIT). The program included nearly 90,000 mammograms conducted on almost 40,000 women. It was automatically run in the background with routine mammography, according to Lehman.

“Understanding who is at risk of developing breast cancer is a key component of earlier detection and better outcomes," explained Adam Yala, lead author and Ph.D. student at MIT. "By understanding who is at risk, we can personalize how often patients are screened and with what modality to catch their cancer as early as possible.”

According to the authors, current breast cancer protocols are driven mainly by human knowledge and intuition on markers sometimes weakly correlated with breast cancer, especially at the individual level. For example, most current protocols are based on study of Caucasian populations, which does not serve women of other races well. Black women are 42 percent more likely to die from breast cancer, according to MIT.

Also, Lehman said that under recent federal guidelines radiologists are required to provide women information on their breast density. Half of all women have dense breasts. But, she said, such information tends to be confusing to patients.

The new AI program can detect cancer patterns too subtle for the human eye to detect on a mammogram up to five years sooner. Early breast cancer detection is associated with better survival rates and lower treatment costs. The researchers also noted that the same basic programs could also eventually be used to predict other disease states in women, such as cardiovascular disorders or other cancers.

“Since the 1960s radiologists have noticed that women have unique and widely variable patterns of breast tissue visible on the mammogram,” said Lehman. “These patterns can represent the influence of genetics, hormones, pregnancy, lactation, diet, weight loss, and weight gain. We can now leverage this detailed information to be more precise in our risk assessment at the individual level.”

A widely accepted AI application could help dispel a long-standing disagreement in medicine around screening. Although mammography has been shown to reduce breast cancer mortality, there is continued debate on how often to screen and when to start. While the American Cancer Society recommends annual screening starting at age 45, the U.S. Preventative Task Force recommends screening every two years beginning at age 50. Further, as reported last week in HCB News, the American Society of Breast Surgeons issued yet another standard for screening guidelines.

Related:


You Must Be Logged In To Post A Comment

做广告
提升您的品牌知名度
拍卖+私人销售
获得最好的价格
买设备/配件
找到最低价格
每日新闻
阅读最新信息
目录
浏览所有的DOTmed用户
DOTmed上的伦理
查看我们的伦理计划
金子分开供营商节目
接收PH要求
金子服务经销商节目
接收请求
提供保健服务者
查看所有的HCP(简称医疗保健提供商)的工具
工作/训练
查找/申请工作
Parts Hunter +EasyPay
获取配件报价
最近证明
查看最近通过认证的用户
最近额定
查看最近通过认证的用户
出租中央
租用设备优惠
卖设备/配件
得到最划算
服务技术员论坛
查找帮助和建议
简单的征求建议书
获取设备报价
真正商业展览
查找对设备的服务
对这个站点的通入和用途是受期限和条件我们支配 法律公告 & 保密性通知
物产和业主对 DOTmed.com,公司 Copyright ©2001-2019 DOTmed.com, Inc.
版权所有