DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
当前地点:
>
> This Story


注册记数器 to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

Cardiology Homepage

Evaluating the cost-effectiveness of AEDs in the U.S. Insights from Dr. Lars W. Andersen on research he conducted and what it should mean for the future of public defibrillators

The 2019 Heart Rhythm Society scientific sessions: advanced technology in electrophysiology Four key takeaways

New machine learning algorithm could decide who is best for heart failure treatment Could help prevent sudden death from heart failure

Philips teams with Medtronic on cryoablation treatment for atrial fibrillation Will form an integrated solution for cryoablation

Varian acquires CyberHeart, enters cardiac radioablation market Emerging technology could benefit treatment of irregular heartbeats

Israeli researchers develop first 3D heart from patient's biological materials A first — complete with blood vessels, ventricles and cells

Using comic illustrations to support patient understanding of cardiac catheterization Making patients more satisfied, less anxious and more informed

Medical community finds ways to make TAVR safer for at-risk patients Improving outcomes with special procedures

New ultrasound tech could help detect pediatric congenital heart disease Visualizes structure and blood flow of babies' hearts

Mick Jagger resting after TAVR heart surgery The 75 year old rock star is reportedly recovering from the operation at New York Presbyterian

FDA gives thumbs-up for Biofourmis’ RhythmAnalytics AI Platform

John R. Fischer , Staff Reporter
The FDA has given Biofourmis the thumbs-up to proceed with the launch of its RhythmAnalytics Platform, which provides AI-based automated interpretations of cardiac arrhythmias.

Utilizing an enhanced deep-learning technique, the cloud-based software can detect more than 15 types of cardiac arrhythmias. Its AI-based design is expected to reduce the potential for misdiagnosis and false positives found in traditional cardiac rhythm classification approaches, especially the high rate of error associated with diagnostic interpretations of ambulatory electrocardiograms (ECGs), such as the ePatch Extended Holter Monitor.

Story Continues Below Advertisement

Servicing GE Nuclear Medicine equipment with OEM trained engineers

We offer full service contracts, PM contracts, rapid response, time and material,camera relocation. Nuclear medicine equipment service provider since 1975. Click or call now for more information 800 96 NUMED



“The presence of motion artifacts from ambulation and the long duration of monitoring — which ranges from 24 hours to two weeks for Holter monitoring — makes manual review challenging. Current algorithms trained on limited data sets don't cater to this issue,” Kuldeep Singh Rajput, founder and CEO, Biofourmis, told HCB News. “RhythmAnalytics leverages deep learning to automate these processes with accuracy levels that match, and in some cases, exceed cardiologist-level performance.”

Errors from computerized arrhythmia interpretations are prone to approach 50 percent in studies, says Rajput, ushering in the need for rapid, automated and highly accurate interpretations of single-lead ECGs for a variety of cardiac rhythm disorders.

Trained with more than a million single-lead ECG recordings, the convolutional network of the system can analyze ECGs captured from any device cleared by the FDA, as well as wearable sensors such as Holter monitors, event recorders, or other similar devices. The recordings used for training were collected from patients with a history of arrhythmias who used a range of ambulatory ECG monitoring devices, including the ePatch Extended Holter Monitor.

In a clinical trial submitted as evidence of its efficacy to the FDA, the platform was initially trained with over 120,000 ECG episodes of over 30 distinctive cardiac arrhythmias, and pitted against two similar deep learning systems and a panel of cardiologists, outperforming all of them with sensitivity of 90.8 percent, specificity of 98.2 percent, and an overall F1 score of 0.834.

Additional conditions it can detect include beat-by-beat morphology computation, such as ventricular arrhythmias and ventricular ectopic beats, as well as non-paced arrhythmias, including Atrial Fibrillation (AFib). It also can be integrated as a cloud-based API in existing cardiac monitoring solutions, or directly integrated into a device or wearable sensor. This reduces the rate of misinterpretation and inappropriate patient management.

“We have no doubt that machine learning-based solutions like RhythmAnalytics will play an important role in assisting physicians and specialists in automated interpretation of data derived from cardiovascular diagnostic tests,” said Rajput.

The solution is currently in use at Brigham and Women's Hospital, as part of a partnership between it and Biofourmis, and is used to continuously monitor for cardiac arrhythmias and manage at-home patients as part of Brigham's Home Hospital Program.

Biofourmis plans to offer the solution’s cloud-based API as software as a service (SaaS) to ensure greater accuracy and scalability of ECG analysis for improved throughput and efficiencies in cardiac monitoring centers.

Cardiology Homepage


You Must Be Logged In To Post A Comment

做广告
提升您的品牌知名度
拍卖+私人销售
获得最好的价格
买设备/配件
找到最低价格
每日新闻
阅读最新信息
目录
浏览所有的DOTmed用户
DOTmed上的伦理
查看我们的伦理计划
金子分开供营商节目
接收PH要求
金子服务经销商节目
接收请求
提供保健服务者
查看所有的HCP(简称医疗保健提供商)的工具
工作/训练
查找/申请工作
Parts Hunter +EasyPay
获取配件报价
最近证明
查看最近通过认证的用户
最近额定
查看最近通过认证的用户
出租中央
租用设备优惠
卖设备/配件
得到最划算
服务技术员论坛
查找帮助和建议
简单的征求建议书
获取设备报价
真正商业展览
查找对设备的服务
对这个站点的通入和用途是受期限和条件我们支配 法律公告 & 保密性通知
物产和业主对 DOTmed.com,公司 Copyright ©2001-2019 DOTmed.com, Inc.
版权所有