DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
当前地点:
>
> This Story


注册记数器 to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

Artificial Intelligence Homepage

Siemens showcases works in progress at SNMMI Includes TeamPlay, syngo Virtual Cockpit and a number of AI algorithms

AI tool for Alexa and smart devices detects cardiac arrest in sleeping patients Monitors patients for agonal breathing

Silicon Valley investor paints dire picture for future of radiologists Claims they should no longer exist in a decade

AMA issues recommendations for accountability of AI in healthcare Aid in advancing quadruple aim

New algorithm better predictor of readmission following discharge, says study Final model drew predictions from 382 variables

Understanding 'data cleaning' in equipment service, and the tools used to do it Acquiring data is only the beginning, insights from AAMI

AI’s role in radiology — past, present, future What will it take to fully integrate machine learning into healthcare?

Startup raises over $6 million for early Alzheimer's detection AI With digital biomarkers, Altoida detects risk long before symptoms appear

Google and Northwestern develop deep learning model for lung cancer detection Performed as well or even better than radiologists

Fujifilm to build new 'smart' facility for endoscope production Will leverage AI and IoT to enhance endoscope production

A new 'roadmap' has been developed
as a guide for research and
development of AI for medical
imaging

New 'roadmap' paves the way for AI innovations in radiology

John R. Fischer , Staff Reporter
Medical imaging players now have a new ‘roadmap’ to go by for guidance in research and development of AI solutions to advance their field.

Developed from input collected at a workshop held by the National Institute of Health in August 2018, the report outlines key research themes and ways to advance foundational machine learning research for medical imaging.

Story Continues Below Advertisement

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.



"The potential value of these machine learning methods to medical imaging is a recent discovery. The workshop and the publications themselves are strong evidence that the key stakeholders are working together to set the agenda," lead author Dr. Curtis P. Langlotz, a professor of radiology and biomedical informatics at Stanford University and RSNA Board liaison for information technology and annual meeting, told HCB News. "I expect they will continue to collaborate as the agenda is carried out."

While expected to advance clinical imaging practice in a number of fields — image reconstruction, noise reduction, segmentation, computer-aided detection and classification, and radiogenomics, among others — research on the use of AI is still in its early stages.

The aim behind the workshop was to instill collaboration and collect feedback on how to enhance opportunities and the pace of research around medical imaging AI, in order to address gaps in knowledge and prioritize areas of study. The result was the report, which points to specific innovations for producing more publicly available, validated and reusable data sets to serve as evaluation criteria for new algorithms and techniques.

Among the points it highlights are:

• new image reconstruction methods that efficiently produce images suitable for human interpretation from source data
• automated image labeling and annotation methods, including information extraction from the imaging report, electronic phenotyping, and prospective structured image reporting
• new machine learning methods for clinical imaging data, such as tailored, pre-trained model architectures, and distributed machine learning methods
• machine learning methods that can explain the advice they provide to human users (a.k.a. explainable artificial intelligence)
• validated methods for image de-identification and data sharing to facilitate wide availability of clinical imaging data sets.

It also specifies that useful data sets should rely on methods for rapidly creating labeled or annotated imaging data. In addition, novel pre-trained model architectures specifically for clinical imaging should be constructed with methods for distributed training that reduce the need for institutes to exchange data with one another.

The authors specify that fulfilling these objectives requires greater collaboration among standards bodies, professional societies, governmental agencies, private industry and other medical imaging stakeholders.

"RSNA published the results of its AI Summit recently, which is well aligned with this roadmap. I have no doubt the other co-sponsors of the NIH Worshop, the ACR and the Academy, will be pulling in the same direction," said Langlotz. "I am hopeful that we are on the road to a well-funded AI research ecosystem, both in foundational and in translational research. Today’s AI research will transform tomorrow’s medical imaging practice."

The workshop was cosponsored by the National Institute of Health, the Radiological Society of North America (RSNA), the American College of Radiology (ACR), and the Academy for Radiology and Biomedical Imaging Research.

The findings were published in the journal, Radiology.

Artificial Intelligence Homepage


You Must Be Logged In To Post A Comment

Advertise
提升您的品牌知名度
拍卖+私人销售
获得最好的价格
买设备/配件
找到最低价格
每日新闻
阅读最新信息
目录
浏览所有的DOTmed用户
DOTmed上的伦理
查看我们的伦理计划
金子分开供营商节目
接收PH要求
金子服务经销商节目
接收请求
提供保健服务者
查看所有的HCP(简称医疗保健提供商)的工具
Jobs/训练
查找/申请工作
Parts Hunter +EasyPay
获取配件报价
Recently Certified
查看最近通过认证的用户
Recently Rated
查看最近通过认证的用户
出租中央
租用设备优惠
卖设备/配件
得到最划算
Service Technicians Forum
查找帮助和建议
简单的征求建议书
获取设备报价
真正商业展览
查找对设备的服务
对这个站点的通入和用途是受期限和条件我们支配 法律公告 & 保密性通知
物产和业主对 DOTmed.com,公司 Copyright ©2001-2019 DOTmed.com, Inc.
版权所有