DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
当前地点:
>
> This Story


注册记数器 to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

Patient Monitors Homepage

Getting remote patient monitoring out of the garage and onto the streets Six strategies for meaningful outreach

Apple study suggests wearable technology may be useful in detecting atrial fibrillation May assist in stroke and hospitalization prevention

FDA approves Sonavex's EchoSure system Monitors blood flow following surgical procedures

The humble hospital bed joins the ranks of smart medical devices Patient monitoring and deep learning enhance the last offerings

IRADIMED halts Europe-bound deliveries of MR vital sign monitor CE Mark expiring this month

Varian acquires Noona Healthcare Gains mobile service app that captures PROs

NuVasive to offer intraoperative neuromonitoring services to Premier clientele Reduces surgical risk for full range of procedures

Philips inks 15-year $75 million MES deal with Children’s Health in Texas Are these contracts the future of value-based care?

Philips enters long-term strategic partnership with Jackson Health System Philips will assume responsibility for upgrading monitoring systems

Google leverages raw EMR data and AI to predict risk of death May lower healthcare costs and false alerts

Innovations sparking quantum leap in remote cardiac monitoring technology

From the April 2019 issue of DOTmed HealthCare Business News magazine

By Stuart Long

Remote cardiac monitoring has come a long way since 1947.
That was our “Kitty Hawk”, when Dr. Ben Holter first donned a backpack with more than 80 pounds of vacuum tube-era monitoring equipment, hit the “record” button on a state-of-the-art reel-to-reel machine, got on a stationary bike and started pedaling. That was the first known broadcast of a radio electrocardiogram.

Story Continues Below Advertisement

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.



Dr. Holter didn’t stop there. He continued to develop the technology, collaborating with Bruce Del Mar of Del Mar Avionics. New solid-state technology, semiconductors and advances in electronics design enabled them to miniaturize the device. The revolution came when the monitor could be reduced to the size of a deck of cards – making it truly wearable and portable. The improvement was exponential – and their invention, for all its practical limitations, saved an untold number of lives.

The cardiac monitoring industry is now undergoing a technological revolution that is just as significant as the miniaturization revolution made possible by the semiconductor. Advances in telecommunications, data storage and management, SaaS (software-as-a-service) and artificial intelligence made in just the last few years are enabling us to make a quantum leap in cardiac diagnosis and intervention. We’re already seeing tremendous improvements for both patients and physicians as more doctors adopt the next generation of cardiac monitoring devices.

Limitations of Holter-like systems
Until now, Holter-style monitors and those developed with similar technology had serious limitations:

1. Patients vulnerable during the monitoring period. First, patients had to wear legacy devices for 2 to 3 days or more, and then return them to the doctor’s office to get data uploaded. Then doctors had to rely on third-party independent diagnostic testing facilities (IDTFs) to get reams of data read to get a diagnosis. This adds days to the diagnostic process – and leaves patients vulnerable to fatal arrhythmias occurring during the monitoring period.

Today, ambulatory cardiac monitoring devices can send secure patient data directly to doctors’ electronic devices while making use of artificial intelligence to improve the process dramatically so physicians can get an intelligent up-to-the-minute feed throughout the monitoring period. They can set up alerts to give them instant notification of potentially dangerous arrhythmias. This alone can potentially allow for physicians to improve the time to intervention such that patients are treated faster.
  Pages: 1 - 2 - 3 >>

Patient Monitors Homepage


You Must Be Logged In To Post A Comment

做广告
提升您的品牌知名度
拍卖+私人销售
获得最好的价格
买设备/配件
找到最低价格
每日新闻
阅读最新信息
目录
浏览所有的DOTmed用户
DOTmed上的伦理
查看我们的伦理计划
金子分开供营商节目
接收PH要求
金子服务经销商节目
接收请求
提供保健服务者
查看所有的HCP(简称医疗保健提供商)的工具
工作/训练
查找/申请工作
Parts Hunter +EasyPay
获取配件报价
最近证明
查看最近通过认证的用户
最近额定
查看最近通过认证的用户
出租中央
租用设备优惠
卖设备/配件
得到最划算
服务技术员论坛
查找帮助和建议
简单的征求建议书
获取设备报价
真正商业展览
查找对设备的服务
对这个站点的通入和用途是受期限和条件我们支配 法律公告 & 保密性通知
物产和业主对 DOTmed.com,公司 Copyright ©2001-2019 DOTmed.com, Inc.
版权所有