dismiss

Clean Sweep Live Auction on Wed. May 1st. Click to view the full inventory

DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
当前地点:
>
> This Story

starstarstarstarstar (1)
注册记数器 to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

MRI Homepage

New study shows value of 7T MR for evaluating MS progression Can detect cortical lesions better than conventional scanners

Trice Imaging connects imaging devices of large chain healthcare provider Aleris Patients and physicians can view images on laptops, cell phones

The benefits of intraoperative MR Q&A with Dr. John Huston Mayo Clinic neuroradiologist discusses what the advanced capabilities mean for patients – as well as providers

Sound Imaging launches MR patient motion and detection system, SAMM MD Reduces repeat scans, prevents interruption to workflow

Gadolinium not required in 3T MR multiple sclerosis follow-up scans Longitude subtraction mapping just as sensitive: study

New MR methodology may distinguish benign and cancerous lymph nodes Could be used before surgery and help determine treatment

FDA gives thumbs-up to Genetesis MCG cardiac imaging system Measures magnetic fields produced by heart's electrical activity

BSWH to install Glassbeam's CLEAN blueprint to leverage machine uptime Will include integrated CMMS software by EQ2

NIH awards $1.8 million to Magnetic Insight for neurovascular MPI Detects magnetic nanoparticle tracers, enables deep-tissue imaging

Siemens focuses on digitalization at HIMSS Its expanded digital service portfolio will be on display

NYU releases biggest ever MR data set in AI Facebook collaboration

Thomas Dworetzky , Contributing Reporter
MR scans could soon be done 10 times faster, thanks to a a large-scale MR dataset just released to the public from fastMRI, a collaboration between Facebook AI Research and NYU Langone's Department of Radiology.

“We hope that the release of this landmark data set, the largest-ever collection of fully-sampled MR raw data, will provide researchers with the tools necessary to overcome the challenges inherent in accelerating MR imaging,” Dr. Michael P. Recht, chair and the Louis Marx Professor of Radiology at NYU Langone said in a statement following his announcement of the news in a plenary address at the 2018 annual meeting of the Radiological Society of North America (RSNA).

Story Continues Below Advertisement

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.



Recht also shared baseline results from the collaboration, made up of 1.5 million MR images of the knee from 10,000 scans, plus raw measurement data from almost 1,600 scans. The collaboration demonstrates that acceleration of MR imaging by a factor of four “is already possible".

The data set is fully anonymized, HIPAA-compliant information from NYU's medical school – and no Facebook data. Future releases will add data from liver and brain scans.

In addition, the open source tool is expected to boost the development of AI systems that are capable of deciphering MR scans, boost research reproducibility, and open the door for more consistent evaluation methods. Plans call for the collaboration to develop a suite of tools and baseline metrics to compare results in an organized challenge that will be announced “in the near future,” according to the NYU report.

“This collaboration focuses on applying the strengths of machine learning to reconstruct high-value images in new ways. Rather than using existing images to train AI algorithms, we will radically change the way medical images are acquired in the first place,” Dr. Daniel K. Sodickson, director of NYU's Center for Advanced Imaging Innovation and Research, added in a statement. “Our aim is not merely to enhance data mining with AI, but rather create new capabilities for medical visualization, to benefit human health.”

MR scans can generate a huge amount of valuable information but are slow in nature. By applying AI to exams, researchers believe they can cut down on the amount of data captured, while maintaining and even boosting the richness of the information in images.

Such features are expected to benefit patients who cannot tolerate the typical length of the process, including very young children, elderly adults and those who are claustrophobic. It may also reduce the need for drug administration to calm jittery patients.
  Pages: 1 - 2 >>

MRI Homepage


You Must Be Logged In To Post A Comment

做广告
提升您的品牌知名度
拍卖+私人销售
获得最好的价格
买设备/配件
找到最低价格
每日新闻
阅读最新信息
目录
浏览所有的DOTmed用户
DOTmed上的伦理
查看我们的伦理计划
金子分开供营商节目
接收PH要求
金子服务经销商节目
接收请求
提供保健服务者
查看所有的HCP(简称医疗保健提供商)的工具
工作/训练
查找/申请工作
Parts Hunter +EasyPay
获取配件报价
最近证明
查看最近通过认证的用户
最近额定
查看最近通过认证的用户
出租中央
租用设备优惠
卖设备/配件
得到最划算
服务技术员论坛
查找帮助和建议
简单的征求建议书
获取设备报价
真正商业展览
查找对设备的服务
对这个站点的通入和用途是受期限和条件我们支配 法律公告 & 保密性通知
物产和业主对 DOTmed.com,公司 Copyright ©2001-2019 DOTmed.com, Inc.
版权所有