DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
SEARCH
当前地点:
>
>
> This Story

Forward Printable StoryPrint Comment

 

 

MRI Homepage

World renowned academic medical center acquires Synaptive's next-generation robotic system for minimally invasive neurosurgery

Aspect Imaging receives ISO 13485:2016 certification

Qfix releases new product to improve brachytherapy workflows and patient transport

Chu de Quebec-Universite Laval in Canada has selected RayStation in combination with Varian's Truebeam Linacs

ViewRay's MRIdian Linac awarded French tender for MR image-guided radiation therapy

sMRI and PET uncover pathway of degeneration in Alzheimer's disease

Purdue researchers visualize neural connections to better understand neurological disease

10 times faster MR liver scan - United Imaging introduced new technologies at ISMRM 2018

Zetta's advanced MR software engine, ZOOM receives FDA clearance

Device may detect heart dysfunction in childhood cancer survivors treated with chemo

Gadolinium deposition in the brain not dose dependent

Press releases may be edited for formatting or style
CHILDREN'S HOSPITAL LOS ANGELES -- Investigators at Children's Hospital Los Angeles have determined that in children receiving gadolinium as a contrast agent to enhance MRI examinations, signal changes attributed solely to deposition of this material in the brain are not dependent on the amount of gadolinium administered but rather these changes are seen in association with other factors such as the presence of brain tumors and treatment using brain irradiation. Results of the study were just published in the journal, Radiology.

Gadolinium is used as a contrast agent to enhance the visibility of specific anatomic structures as well as to identify certain pathological conditions. MRI images are often described in terms of "signal intensity", or the brightness of specific structures -- conveying information about the content of the tissue. In neuroradiology, MRIs are useful for identifying and monitoring brain tumors.

Story Continues Below Advertisement

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.



In 2014, a sentinel paper was published that reported gadolinium deposition in the brains of patients experiencing repeat, enhanced MRI. Most of these patients required imaging due to brain tumors. As a result of this and subsequent studies, gadolinium deposition was considered dose dependent - meaning the more contrast material a patient was exposed to - the greater deposition in the brain.

"In my practice, I was not seeing this phenomenon - MRI signal changes previously identified were not happening equally to patients receiving the same amount of gadolinium," said Benita Tamrazi, MD, a neuroradiologist at Children's Hospital Los Angeles and first author on the recently published study. "I saw increased MRI signal changes in the patients receiving radiation for brain tumors, independent of the dose of gadolinium."

This observation led Tamrazi to undertake her own study of patients treated at CHLA between 2000 through 2015, who received gadolinium at least 4 times. The 145 evaluable patients were separated into groups - patients with primary brain tumors (structural changes) and patients with neuroblastoma without disease in the brain (no structural changes). The primary brain tumor group was further divided into the following treatment groups:

Radiation +/- chemotherapy
Chemotherapy alone
No therapy

Tamrazi found that MR signal intensity changes presumed to be entirely secondary to gadolinium deposition in the brain were much more significant in patients who had primary brain tumors treated with radiation, independent of the dose of gadolinium they received. She suggests more research is needed to determine if brain tumor treatment with radiation enhances gadolinium deposition independent of the dose administered.

"There are a lot of unknowns regarding gadolinium deposition in the brain," said Tamrazi. "Understanding that the process is not dose dependent and that other factors are at play, such as structural changes of the brain with tumors and radiation, will hopefully help us learn more about the underlying mechanism of deposition and ultimately identify any possible clinical implications of deposition."

MRI Homepage


You Must Be Logged In To Post A Comment

做广告
提升您的品牌知名度
拍卖+私人销售
获得最好的价格
买设备/配件
找到最低价格
每日新闻
阅读最新信息
目录
浏览所有的DOTmed用户
DOTmed上的伦理
查看我们的伦理计划
金子分开供营商节目
接收PH要求
金子服务经销商节目
接收请求
提供保健服务者
查看所有的HCP(简称医疗保健提供商)的工具
工作/训练
查找/申请工作
Parts Hunter +EasyPay
获取配件报价
最近证明
查看最近通过认证的用户
最近额定
查看最近通过认证的用户
出租中央
租用设备优惠
卖设备/配件
得到最划算
服务技术员论坛
查找帮助和建议
简单的征求建议书
获取设备报价
真正商业展览
查找对设备的服务
对这个站点的通入和用途是受期限和条件我们支配 法律公告 & 保密性通知
物产和业主对 DOTmed.com,公司 Copyright ©2001-2018 DOTmed.com, Inc.
版权所有