DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
SEARCH
当前地点:
>
> This Story


注册记数器 to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

More Future Of...

DR to meet DNA: The future of X-ray Digital X-ray will soon capture motion and provide a vast array of new insights to diagnostic imaging

The present and future of spectral imaging Insights from Christian Eusemann, Ph.D., vice president of collaborations at Siemens Healthineers North America

What will MR look like in ten years? Insights from Michael Friebe, research professor of image-guided therapies at the Otto von Guericke University in Magdeburg Germany

The future of equipment upgrades Satrajit Misra, vice president of Marketing and Strategic Development, Canon Medical Systems Inc., on what lengthening replacement cycles mean for providers

The future of precision medicine Insights from Robert A. Cascella leader of Philips’ Diagnosis & Treatment businesses

See All Future Of...  

More Voices

The impact of mini C-arms on patient and clinician experience Insights from Michael L. Sganga, a podiatric surgeon with Orthopedics New England

Another great FBS meeting The Jacobus Report

It's open season: how healthcare companies can boost their membership Insights from Michael Mathias on the insurance marketplace and the value of emotional connection

Patient leaders ask Congress to stand up for medical innovation and repeal the device tax Erika Hanson Brown calls on the Senate to usher in an era of greater innovation in cancer care

George H.W. Bush and healthcare The Jacobus Report

Leon Chen

The future of AI in radiology

From the November 2017 issue of DOTmed HealthCare Business News magazine
AI, as a field, has undergone numerous periods of exuberance over the past decades.

These waves of promise and excitement invariably make their way into medicine, but in the past, they have been tempered by the realities of medicine, when evidence of real-world performance is sought. Now, there is a palpable sense that this time around, things are different, that we are on the precipice of a revolution, rather than mere incremental evolution of previous technologies. The reason, of course, is deep learning. Broadly speaking, deep learning is not a single technological breakthrough, but rather a collection of accumulated mathematical principles, data structures and optimization algorithms, which when applied to the right data, produce results on certain tasks that far outperform previous methods. While it has seen broad application across almost all data types, visual data is where it has had the greatest tangible successes. Radiology is, therefore, one of its most obvious applications.

Story Continues Below Advertisement

RaySafe helps you avoid unnecessary radiation

RaySafe solutions are designed to minimize the need for user interaction, bringing unprecedented simplicity & usability to the X-ray room. We're committed to establishing a radiation safety culture wherever technicians & medical staff encounter radiation.



One of the attractions of deep learning is that less intensive data preparation is typically required. There is a perception that one can just feed the neural network raw pixels of say, any chest X-ray. In practice, it is not quite this magical. Good data science and engineering practices are still paramount in building such systems. One such data science practice is ensuring the input data is of sufficient quality and quantity. Almost all practical applications of machine learning today are supervised, meaning accurate labels of your ultimate objective is required to train your models on. Not only is obtaining these labels a laborious process, it is an expensive one given the human costs.

We are only in the very early phases of applying deep learning to medical imaging, though the pace of abstracts and papers being published on the topic is rapidly picking up. We are seeing applications of all types, from classification of normal versus pathology, to higher-level tasks such as localization, segmentation and quantification. Most of these current applications are relatively simple and restricted to single-task problems. An article published by Lakhani and Sundaram in Radiology earlier this year demonstrated a 96 percent accuracy rate in classifying tuberculosis on 150 plain chest X-rays in a holdout test set. The authors took off-the-shelf neural networks developed for general image recognition, trained them on this new task and obtained excellent results. One can imagine hundreds of such algorithms that can be trained today in this straightforward manner. This is before we even think about building up the complexity with higher-order reasoning, multi-modal models such as images plus text or images plus genomics, or composition of neural networks in a modular fashion. There are so many potential applications that we can already create using simple off-the-shelf neural networks, so what are the bottlenecks?
  Pages: 1 - 2 >>

Related:


You Must Be Logged In To Post A Comment

做广告
提升您的品牌知名度
拍卖+私人销售
获得最好的价格
买设备/配件
找到最低价格
每日新闻
阅读最新信息
目录
浏览所有的DOTmed用户
DOTmed上的伦理
查看我们的伦理计划
金子分开供营商节目
接收PH要求
金子服务经销商节目
接收请求
提供保健服务者
查看所有的HCP(简称医疗保健提供商)的工具
工作/训练
查找/申请工作
Parts Hunter +EasyPay
获取配件报价
最近证明
查看最近通过认证的用户
最近额定
查看最近通过认证的用户
出租中央
租用设备优惠
卖设备/配件
得到最划算
服务技术员论坛
查找帮助和建议
简单的征求建议书
获取设备报价
真正商业展览
查找对设备的服务
对这个站点的通入和用途是受期限和条件我们支配 法律公告 & 保密性通知
物产和业主对 DOTmed.com,公司 Copyright ©2001-2018 DOTmed.com, Inc.
版权所有