Over 100 Massachusetts Auctions End Today - Bid Now
Over 1750 Total Lots Up For Auction at Five Locations - NJ Cleansweep 05/02, TX 05/03, TX 05/06, NJ 05/08, WA 05/09

New cancer scan could guide brain surgery

Press releases may be edited for formatting or style | March 02, 2021 Operating Room Ultrasound

Brain tumours tend, on average, to be stiffer than normal brain tissue and the technique works by mapping suspicious areas of particular stiffness, which can then be examined and removed during surgery.

Patient outcomes from brain tumour surgery are known to be better when as much of the tumour as possible is removed. In order to make sure that none of the resectable tumour is left behind, neurosurgeons use tools to guide them during surgery.

But although MRI scans are the most accurate, their use during surgery is not normally an option - as they are costly, not normally available in operating theatres and would increase the duration of surgery by almost two hours.

Shear wave scans were shown to be as good as post-surgery MRIs at detecting tumour tissue that had been left behind - making them a cheaper, faster and more feasible alternative. The study is the first to demonstrate the potential of shear wave elastography as a neurosurgical tool to confirm during surgery the completeness of tumour removal - although the benefits of the technique will now need to be confirmed in larger studies before it can be recommended as standard practice.

Study leader Professor Jeffrey Bamber, Professor in Physics Applied to Medicine at The Institute of Cancer Research, London, said:

"Ensuring all of a brain tumour is removed without damaging healthy tissue is a major challenge in brain surgery. Using this new type of scan, surgeons could greatly increase confidence that no cancerous tissue is going to be left behind after surgery.

"Shear wave scanning can quickly and affordably map the stiffness of brain and tumour tissue in patients during surgery. Tumour tissue tends to have a different stiffness from that of surrounding healthy brain tissue and can be located and removed.

"We have shown for the first time that this new tool is better than either a standard 2D ultrasound or a surgeon's judgment on its own - and has the potential to supplement a surgeon's opinion as a means of improving outcomes from operations."

Professor Kevin Harrington, Head of the Division of Radiotherapy and Imaging at The Institute of Cancer Research, London, said:

"Imaging plays a crucial role in many aspects of cancer treatment, in providing valuable information about tumours and ensuring doctors don't have to make decisions blind. This new study has shown for the first time that a particular type of ultrasound scan could provide real-time guidance to brain surgeons during operations as they choose which tissue to remove. It's an exciting area of research which has the potential to improve outcomes for patients by ensuring surgeons take out the entire tumour while minimising damage to the healthy brain."

You Must Be Logged In To Post A Comment